Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473847

RESUMO

The normal ageing process affects resistance arteries, leading to various functional and structural changes. Systolic hypertension is a common occurrence in human ageing, and it is associated with large artery stiffening, heightened pulsatility, small artery remodeling, and damage to critical microvascular structures. Starting from young adulthood, a progressive elevation in the mean arterial pressure is evidenced by clinical and epidemiological data as well as findings from animal models. The myogenic response, a protective mechanism for the microcirculation, may face disruptions during ageing. The dysregulation of calcium entry channels (L-type, T-type, and TRP channels), dysfunction in intracellular calcium storage and extrusion mechanisms, altered expression of potassium channels, and a change in smooth muscle calcium sensitization may contribute to the age-related dysregulation of myogenic tone. Flow-mediated vasodilation, a hallmark of endothelial function, is compromised in ageing. This endothelial dysfunction is related to increased oxidative stress, lower nitric oxide bioavailability, and a low-grade inflammatory response, further exacerbating vascular dysfunction. Resistance artery remodeling in ageing emerges as a hypertrophic response of the vessel wall that is typically observed in conjunction with outward remodeling (in normotension), or as inward hypertrophic remodeling (in hypertension). The remodeling process involves oxidative stress, inflammation, reorganization of actin cytoskeletal components, and extracellular matrix fiber proteins. Reactive oxygen species (ROS) signaling and chronic low-grade inflammation play substantial roles in age-related vascular dysfunction. Due to its role in the regulation of vascular tone and structural proteins, the RhoA/Rho-kinase pathway is an important target in age-related vascular dysfunction and diseases. Understanding the intricate interplay of these factors is crucial for developing targeted interventions to mitigate the consequences of ageing on resistance arteries and enhance the overall vascular health.


Assuntos
Hipertensão , Vasoconstrição , Animais , Humanos , Adulto Jovem , Adulto , Cálcio/metabolismo , Proteômica , Artérias/metabolismo , Envelhecimento , Inflamação
2.
Hypertension ; 79(7): 1409-1422, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35534926

RESUMO

BACKGROUND: ANP (atrial natriuretic peptide), acting through NPR1 (natriuretic peptide receptor 1), provokes hypotension. Such hypotension is thought to be due to ANP inducing vasodilation via NPR1 in the vasculature; however, the underlying mechanism remains unclear. Here, we investigated the mechanisms of acute and chronic blood pressure regulation by ANP. METHODS AND RESULTS: Immunohistochemical analysis of rat tissues revealed that NPR1 was abundantly expressed in endothelial cells and smooth muscle cells of small arteries and arterioles. Intravenous infusion of ANP significantly lowered systolic blood pressure in wild-type mice. ANP also significantly lowered systolic blood pressure in smooth muscle cell-specific Npr1-knockout mice but not in endothelial cell-specific Npr1-knockout mice. Moreover, ANP significantly lowered systolic blood pressure in Nos3-knockout mice. In human umbilical vein endothelial cells, treatment with ANP did not influence nitric oxide production or intracellular Ca2+ concentration, but it did hyperpolarize the cells. ANP-induced hyperpolarization of human umbilical vein endothelial cells was inhibited by several potassium channel blockers and was also abolished under knockdown of RGS2 (regulator of G-protein signaling 2), an GTPase activating protein in G-protein α-subunit. ANP increased Rgs2 mRNA expression in human umbilical vein endothelial cells but failed to lower systolic blood pressure in Rgs2-knockout mice. Endothelial cell-specific Npr1-overexpressing mice exhibited lower blood pressure than did wild-type mice independent of RGS2, and showed dilation of arterial vessels on synchrotron radiation microangiography. CONCLUSIONS: Together, these results indicate that vascular endothelial NPR1 plays a crucial role in ANP-mediated blood pressure regulation, presumably by a mechanism that is RGS2-dependent in the acute phase and RGS2-independent in the chronic phase.


Assuntos
Fator Natriurético Atrial , Pressão Sanguínea , Receptores do Fator Natriurético Atrial , Animais , Fator Natriurético Atrial/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Camundongos , Camundongos Knockout , Ratos , Receptores do Fator Natriurético Atrial/metabolismo
3.
Mech Ageing Dev ; 200: 111594, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34756926

RESUMO

Aging is associated with hypertension and brain blood flow dysregulation, which are major risk factors for cardiovascular and neurodegenerative diseases. Structural remodeling, endothelial dysfunction, or hypercontractility of resistance vessels may cause increased total peripheral resistance and hypertension. Recent studies showed that G protein- and RhoA/Rho-kinase pathways are involved in increased mean arterial pressure (MAP) and arterial tone in middle-aged mice. We aimed to characterize the age-dependent changes in the vascular proteome in normal laboratory mice using mass spectrometry and bioinformatics analyses on middle cerebral arteries and mesenteric resistance arteries from young (3 months) vs. middle-aged (14 months) mice. In total, 31 proteins were significantly affected by age whereas 172 proteins were differentially expressed by vessel type. Hierarchical clustering revealed that 207 proteins were significantly changed or clustered by age. Vitamin B6 pathway, Biosynthesis of antibiotics, Regulation of actin cytoskeleton and Endocytosis were the top enriched KEGG pathways by age. Several proteins in the RhoA/Rho-kinase pathway changed in a manner consistent with hypertension and dysregulation of cerebral perfusion. Although aging had a less profound effect than vessel type on the resistance artery proteome, regulation of actin cytoskeleton, including the RhoA/Rho-kinase pathway, is an important target for age-dependent hypertension.


Assuntos
Envelhecimento/fisiologia , Artérias Mesentéricas , Artéria Cerebral Média , Proteoma/metabolismo , Resistência Vascular , Proteína rhoA de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Circulação Cerebrovascular , Biologia Computacional/métodos , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Espectrometria de Massas/métodos , Artérias Mesentéricas/metabolismo , Artérias Mesentéricas/fisiopatologia , Camundongos , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/fisiopatologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Quinases Associadas a rho/metabolismo
4.
J Physiol ; 599(24): 5361-5377, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34705288

RESUMO

Changes in cellular Ca2+ levels have major influences on vascular function and blood pressure regulation. Vascular smooth muscle cells (SMCs) and endothelial cells (ECs) orchestrate vascular activity in distinct ways, often involving highly specific fluctuations in Ca2+ signalling. Ageing is a major risk factor for cardiovascular diseases, but the impact of ageing per se on vascular Ca2+ signalling has received insufficient attention. We reviewed the literature for age-related changes in Ca2+ signalling in relation to vascular structure and function. Vascular tone dysregulation in several vascular beds has been linked to abnormal expression or activity of SMC voltage-gated Ca2+ channels, Ca2+ -activated K+ channels or TRPC6 channels. Some of these effects were linked to altered caveolae density, microRNA expression or 20-HETE abundance. Intracellular store Ca2+ handling was suppressed in ageing mainly via reduced expression of intracellular Ca2+ release channels, and Ca2+ reuptake or efflux pumps. An increase in mitochondrial Ca2+ uptake, leading to oxidative stress, could also play a role in SMC hypercontractility and structural remodelling in ageing. In ECs, ageing entailed diverse effects on spontaneous and evoked Ca2+ transients, as well as structural changes at the EC-SMC interface. The concerted effects of altered Ca2+ signalling on myogenic tone, endothelium-dependent vasodilatation, and vascular structure are likely to contribute to blood pressure dysregulation and blood flow distribution deficits in critical organs. With the increase in the world's ageing population, future studies should be directed at solving specific ageing-induced Ca2+ signalling deficits to combat the imminent accelerated vascular ageing and increased risk of cardiovascular diseases.


Assuntos
Cálcio , Músculo Liso Vascular , Cálcio/metabolismo , Sinalização do Cálcio , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Músculo Liso Vascular/metabolismo
5.
Mech Ageing Dev ; 191: 111336, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32918949

RESUMO

Calcium signaling in vascular smooth muscle is crucial for arterial tone regulation and vascular function. Several proteins, including Ca2+ channels, function in an orchestrated fashion so that blood vessels can sense and respond to physiological stimuli such as changes in intravascular pressure. Activation of the voltage-dependent Ca2+ channel, Cav1.2, leads to Ca2+ influx and consequently arterial tone development and vasoconstriction. Unique among Ca2+ channels, the vascular Cav3.2 T-type channel mediates feedback inhibition of arterial tone-and therefore causes vasodilation-of resistance arteries by virtue of functional association with hyperpolarizing ion channels. During aging, several signaling modalities are altered along with vascular remodeling. There is a growing appreciation of how calcium channel signaling alters with aging and how this may affect vascular function. Here, we discuss key determinants of arterial tone development and the crucial involvement of Ca2+ channels. We next provide an updated view of key changes in Ca2+ channel expression and function during aging and how these affect vascular function. Further, this article synthesizes new questions in light of recent developments. We hope that these questions will outline a roadmap for new research, which, undoubtedly, will unravel a more comprehensive picture of arterial tone dysfunction during aging.


Assuntos
Envelhecimento/metabolismo , Artérias/metabolismo , Pressão Sanguínea , Sinalização do Cálcio , Músculo Liso Vascular/metabolismo , Vasoconstrição , Animais , Humanos
6.
Cephalalgia ; 40(12): 1310-1320, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32611244

RESUMO

BACKGROUND: The Transient Receptor Potential Ankyrin 1 (TRPA1) channel might play a role in migraine. However, different mechanisms for this have been suggested. The purpose of our study was to investigate the localization and significance of TRPA1 channels in rat pial and dural arteries. METHODS: Immunofluorescence microscopy was used to localize TRPA1 channels in dural arteries, pial arteries, dura mater and trigeminal ganglion. The genuine closed cranial window model was used to examine the effect of Na2S, a donor of the TRPA1 channel opener H2S, on the diameter of pial and dural arteries. Further, we performed blocking experiments with TRPA1 antagonist HC-030031, calcitonin gene-related peptide (CGRP) receptor antagonist olcegepant and KCa3.1 channel blocker TRAM-34. RESULTS: TRPA1 channels were localized to the endothelium of both dural and pial arteries and in nerve fibers in dura mater. Further, we found TRPA1 expression in the membrane of trigeminal ganglia neuronal cells, some of them also staining for CGRP. Na2S caused dilation of both dural and pial arteries. In dural arteries, this was inhibited by HC-030031 and olcegepant. In pial arteries, the dilation was inhibited by TRAM-34, suggesting involvement of the KCa3.1 channel. CONCLUSION: Na2S causes a TRPA1- and CGRP-dependent dilation of dural arteries and a KCa3.1 channel-dependent dilation of pial arteries in rats.


Assuntos
Dura-Máter/metabolismo , Pia-Máter/metabolismo , Sulfetos/farmacologia , Canal de Cátion TRPA1/metabolismo , Vasodilatadores/farmacologia , Animais , Dura-Máter/efeitos dos fármacos , Masculino , Transtornos de Enxaqueca/metabolismo , Transtornos de Enxaqueca/fisiopatologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Pia-Máter/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Canal de Cátion TRPA1/efeitos dos fármacos
7.
Clin Sci (Lond) ; 133(24): 2499-2516, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31830262

RESUMO

Obesity and diabetes in humans are associated with hypertrophic remodeling and increased media:lumen ratio of small resistance arteries, which is an independent predictor of cardiovascular events. In order to minimize increases in media:lumen ratio, hypertrophic remodeling should be accompanied by outward remodeling. We aimed to investigate the mechanisms of structural remodeling in small pial arteries (PAs) and terminal mesenteric arteries (TMAs) from obese Göttingen Minipigs with or without diabetes. Göttingen Minipigs received either control diet (lean control (LC)), high fat/high fructose/high cholesterol diet (FFC), or FFC diet with streptozotocin (STZ)-induced diabetes (FFC/STZ) for 13 months. At the end of the study (20 months), we assessed body weight, fasting plasma biochemistry, passive vessel dimensions, mRNA expression (matrix metallopeptidases 2/9 (MMP2, MMP9), tissue inhibitor of metallopeptidase 1 (TIMP1), transglutaminase 2 (TGM2), Rho-kinase 1 (ROCK1), TGFß-receptor 2 (TGFBR2), and IGF1-receptor (IGFR1) genes), and immunofluorescence in PAs and TMAs. We performed multiple linear correlation analyses using plasma values, structural data, and gene expression data. We detected outward hypertrophic remodeling in TMAs and hypertrophic remodeling in PAs from FFC/STZ animals. ROCK1 and TGM2 genes were up-regulated in PAs and TMAs from the FFC/STZ group. Passive lumen diameter (PLD) of TMAs was correlated with plasma values of glucose (GLU), fructosamine (FRA), total cholesterol (TC), and triglycerides (TGs). ROCK1 and TGM2 expressions in TMAs were correlated with PLD, plasma GLU, fructosamine, and TC. ROCK1 and TGM2 proteins were immunolocalized in the media of PAs and TMAs, and their fluorescence levels were increased in the FFC/STZ group. Hyperglycemia/hyperlipidemia is involved in regulation of ROCK1 and TGM2 expression leading to outward remodeling of small resistance arteries in obese diabetic Göttingen Minipigs.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Obesidade , Transglutaminases/metabolismo , Remodelação Vascular , Quinases Associadas a rho/metabolismo , Animais , Artérias , Colesterol na Dieta/efeitos adversos , Diabetes Mellitus Experimental , Dieta/efeitos adversos , Dieta Hiperlipídica/efeitos adversos , Frutose/efeitos adversos , Proteínas de Ligação ao GTP/genética , Hiperglicemia/fisiopatologia , Masculino , Artérias Mesentéricas , Pia-Máter/irrigação sanguínea , Proteína 2 Glutamina gama-Glutamiltransferase , Suínos , Porco Miniatura , Transglutaminases/genética , Quinases Associadas a rho/genética
8.
Pharmacol Rep ; 71(4): 565-572, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31132686

RESUMO

BACKGROUND: Transient receptor potential ankyrin 1 (TRPA1) channels may have a role in migraine as some substances known to cause headache activate the channel. In the craniovascular system such activation causes a calcitonin gene-related peptide (CGRP)-dependent increase in meningeal blood flow. TRPA1 channels in the endothelium of cerebral arteries cause vasodilation when activated. The headache preventive substance feverfew inhibits activation of TRPA1 channels. In this study we aim to compare and characterize the effect of the TRPA1 agonist allyl isothiocyanate (AITC) on the diameter of rat dural and pial arteries in vivo. METHODS: The genuine closed-cranial window technique in rats was used to examine changes in dural and pial artery diameter and mean arterial blood pressure (MABP) after intracarotid infusion of AITC. Blockade experiments were performed by intravenous infusion of olcegepant, HC-030031, sumatriptan or capsazepine immediately after infusion of AITC, in four different groups of rats. RESULTS: AITC caused a significant dilation of dural arteries, which was inhibited by HC-030031, olcegepant and sumatriptan, but not by capsazepine. In pial arteries AITC caused a significant dilation, which was not inhibited by any of the pre-treatments, suggesting a poor penetration of the blood-brain barrier or autoregulation due to dimethyl sulfoxide (DMSO) mediated decrease in MABP during HC-030031 infusion. AITC did not cause a significant change in MABP. CONCLUSION: AITC causes dilation of dural arteries via a mechanism dependent on CGRP and TRPA1 that is sensitive to sumatriptan. AITC causes a small but significant dilation of pial arteries.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Artérias Cerebrais/efeitos dos fármacos , Isotiocianatos/farmacologia , Canal de Cátion TRPA1/agonistas , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Artérias Cerebrais/metabolismo , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Infusões Intra-Arteriais , Isotiocianatos/administração & dosagem , Masculino , Ratos Sprague-Dawley , Vasoconstritores/farmacologia , Vasodilatadores/administração & dosagem
9.
Am J Physiol Heart Circ Physiol ; 315(3): H644-H657, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29775408

RESUMO

Inward remodeling of resistance vessels is an independent risk factor for cardiovascular events. Thus far, the remodeling process remains incompletely elucidated, but the activation level of the vascular smooth muscle cell appears to play a central role. Accordingly, previous data have suggested that an antagonistic and supposedly beneficial response, outward remodeling, may follow prolonged vasodilatation. The present study aimed to determine whether 1) outward remodeling follows 3 days of vessel culture without tone, 2) a similar response can be elicited in a much shorter 4-h timeframe, and, finally, 3) whether a 4-h response can be prevented or reversed by the presence of vasoconstrictors in the medium. Cannulated mouse small mesenteric arteries were organocultured for 3 days in the absence of tone, leading to outward remodeling that continued throughout the culture period. In more acute experiments in which cannulated small mesenteric arteries were maintained in physiological saline without tone for 4 h, we detected a similar outward remodeling that proceeded at a rate several times faster. In the 4-h experimental setting, continuous vasoconstriction to ~50% tone by abluminal application of UTP or norepinephrine + neuropeptide Y prevented outward remodeling but did not cause inward remodeling. Computational modeling was used to simulate and interpret these findings and to derive time constants of the remodeling processes. It is suggested that depriving resistance arteries of activation will lead to eutrophic outward remodeling, which can be prevented by vascular smooth muscle cell activation induced by prolonged vasoconstrictor exposure. NEW & NOTEWORTHY We have established an effective 4-h method for studying outward remodeling in pressurized mouse resistance vessels ex vivo and have determined conditions that block the remodeling response. This allows for investigating the subtle but clinically highly relevant phenomenon of outward remodeling while avoiding both laborious 3-day organoid culture of cannulated vessels and in vivo experiments lasting several weeks.


Assuntos
Artérias Mesentéricas/fisiologia , Músculo Liso Vascular/fisiologia , Remodelação Vascular , Vasoconstrição , Animais , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Modelos Cardiovasculares , Tono Muscular , Músculo Liso Vascular/efeitos dos fármacos , Neuropeptídeo Y/farmacologia , Norepinefrina/farmacologia , Uridina Trifosfato/farmacologia , Vasoconstritores/farmacologia
10.
Clin Sci (Lond) ; 132(4): 461-474, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29436481

RESUMO

Abdominal obesity and/or a high intake of fructose may cause hypertension. K+ channels, Na/K-ATPase, and voltage-gated Ca2+ channels are crucial determinants of resistance artery tone and thus the control of blood pressure. Limited information is available on the role of K+ transporters in long-term diet-induced hypertension in rats. We hypothesized that a 28-week diet rich in fat, fructose, or both, will lead to changes in K+ transporter expression and function, which is associated with increased blood pressure and decreased arterial function. Male Sprague-Dawley (SD) rats received a diet containing normal chow (Control), high-fat chow (High Fat), high-fructose in drinking water (High Fructose), or a combination of high-fat and high-fructose diet (High Fat/Fruc) for 28 weeks from the age of 4 weeks. Measurements included body weight (BW), systolic blood pressure (SBP), mRNA expression of vascular K+ transporters, and vessel myography in small mesenteric arteries (SMAs). BW was increased in the High Fat and High Fat/Fruc groups, and SBP was increased in the High Fat/Fruc group. mRNA expression of small conductance calcium-activated K+ channel (SKCa), intermediate conductance calcium-activated K+ (IKCa), and Kir2.1 inward rectifier K+ channels were reduced in the High Fat/Fruc group. Reduced endothelium-derived hyperpolarization (EDH)-type relaxation to acetylcholine (ACh) was seen in the High Fat and High Fat/Fruc groups. Ba2+-sensitive dilatation to extracellular K+ was impaired in all the experimental diet groups. In conclusion, reduced expression and function of SKCa, IKCa, and Kir2.1 channels are associated with elevated blood pressure in rats fed a long-term High Fat/Fruc. Rats fed a 28-week High Fat/Fruc provide a relevant model of diet-induced hypertension.


Assuntos
Acetilcolina/farmacologia , Dieta , Hipertensão/etiologia , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Cálcio/metabolismo , Endotélio Vascular/metabolismo , Masculino , Ratos Sprague-Dawley , Tempo
11.
Channels (Austin) ; 11(3): 183-195, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28055302

RESUMO

L-type voltage gated Ca2+ channels are considered to be the primary source of calcium influx during the myogenic response. However, many vascular beds also express T-type voltage gated Ca2+ channels. Recent studies suggest that these channels may also play a role in autoregulation. At low pressures (40-80 mmHg) T-type channels affect myogenic responses in cerebral and mesenteric vascular beds. T-type channels also seem to be involved in skeletal muscle autoregulation. This review discusses the expression and role of T-type voltage gated Ca2+ channels in the autoregulation of several different vascular beds. Lack of specific pharmacological inhibitors has been a huge challenge in the field. Now the research has been strengthened by genetically modified models such as mice lacking expression of T-type voltage gated Ca2+ channels (CaV3.1 and CaV3.2). Hopefully, these new tools will help further elucidate the role of voltage gated T-type Ca2+ channels in autoregulation and vascular function.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Homeostase , Fluxo Sanguíneo Regional , Animais , Humanos , Potenciais da Membrana , Contração Muscular
12.
J Physiol ; 594(20): 5881-5898, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-26752249

RESUMO

KEY POINTS: Blood pressure and flow exert mechanical forces on the walls of small arteries, which are detected by the endothelial and smooth muscle cells, and lead to regulation of the diameter (basal tone) of an artery. CaV 3.2 T-type calcium channels are expressed in the wall of small arteries, although their function remains poorly understood because of the low specificity of T-type blockers. We used mice deficient in CaV 3.2 channels to study their role in pressure- and flow-dependent tone regulation and the possible impact of ageing on this role. In young mice, CaV 3.2 channels oppose pressure-induced vasoconstriction and participate in endothelium-dependent, flow-mediated dilatation. These effects were not seen in mature adult mice. The results of the present study demonstrate an age-dependent impact of CaV 3.2 T-type calcium channel deletion in rodents and suggest that the loss of CaV 3.2 channel function leads to more constricted arteries, which is a risk factor for cardiovascular disease. ABSTRACT: The myogenic response and flow-mediated vasodilatation are important regulators of local blood perfusion and total peripheral resistance, and are known to entail a calcium influx into vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), respectively. CaV 3.2 T-type calcium channels are expressed in both VSMCs and ECs of small arteries. The T-type channels are important drug targets but, as a result of the lack of specific antagonists, our understanding of the role of CaV 3.2 channels in vasomotor tone at various ages is scarce. We evaluated the myogenic response, flow-mediated vasodilatation, structural remodelling and mRNA + protein expression in small mesenteric arteries from CaV 3.2 knockout (CaV 3.2KO) vs. wild-type mice at a young vs. mature adult age. In young mice only, deletion of CaV 3.2 led to an enhanced myogenic response and a ∼50% reduction of flow-mediated vasodilatation. Ni2+ had both CaV 3.2-dependent and independent effects. No changes in mRNA expression of several important K+ and Ca2+ channel genes were induced by CaV 3.2KO However, the expression of the other T-type channel isoform (CaV 3.1) was reduced at the mRNA and protein level in mature adult compared to young wild-type arteries. The results of the present study demonstrate the important roles of the CaV 3.2 T-type calcium channels in myogenic tone and flow-mediated vasodilatation that disappear with ageing. Because increased arterial tone is a risk factor for cardiovascular disease, we conclude that CaV 3.2 channels, by modulating pressure- and flow-mediated vasomotor responses to prevent excess arterial tone, protect against cardiovascular disease.


Assuntos
Arteríolas/metabolismo , Canais de Cálcio Tipo T/metabolismo , Desenvolvimento Muscular/fisiologia , Animais , Pressão Sanguínea/fisiologia , Cálcio/metabolismo , Doenças Cardiovasculares/metabolismo , Artérias Mesentéricas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Potássio/metabolismo , RNA Mensageiro/metabolismo , Resistência Vascular/fisiologia , Vasodilatação/fisiologia
13.
BMC Physiol ; 13: 8, 2013 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-23663730

RESUMO

BACKGROUND: ATP-sensitive K⁺ channels (KATP channels), NO, prostaglandins, 20-HETE and L-type Ca²âº channels have all been suggested to be involved in oxygen sensing in skeletal muscle arterioles, but the role of the individual mechanisms remain controversial. We aimed to establish the importance of these mechanisms for oxygen sensing in arterioles in an in vivo model of metabolically active skeletal muscle. For this purpose we utilized the exteriorized cremaster muscle of anesthetized mice, in which the cremaster muscle was exposed to controlled perturbation of tissue PO2. RESULTS: Change from "high" oxygen tension (PO2 = 153.4 ± 3.4 mmHg) to "low" oxygen tension (PO2 = 13.8 ± 1.3 mmHg) dilated cremaster muscle arterioles from 11.0 ± 0.4 µm to 32.9 ± 0.9 µm (n = 28, P < 0.05). Glibenclamide (KATP channel blocker) caused maximal vasoconstriction, and abolished the dilation to low oxygen, whereas the KATP channel opener cromakalim caused maximal dilation and prevented the constriction to high oxygen. When adding cromakalim on top of glibenclamide or vice versa, the reactivity to oxygen was gradually restored. Inhibition of L-type Ca²âº channels using 3 µM nifedipine did not fully block basal tone in the arterioles, but rendered them unresponsive to changes in PO2. Inhibition of the CYP450-4A enzyme using DDMS blocked vasoconstriction to an increase in PO2, but had no effect on dilation to low PO2. CONCLUSIONS: We conclude that: 1) L-type Ca²âº channels are central to oxygen sensing, 2) KATP channels are permissive for the arteriolar response to oxygen, but are not directly involved in the oxygen sensing mechanism and 3) CYP450-4A mediated 20-HETE production is involved in vasoconstriction to high PO2.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Canais KATP/metabolismo , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Animais , Arteríolas/metabolismo , Cromakalim/farmacologia , Glibureto/farmacologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Nifedipino/farmacologia , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase/fisiologia , Ácido Retinoico 4 Hidroxilase , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
14.
J Cereb Blood Flow Metab ; 33(5): 649-56, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23443170

RESUMO

Despite recent advances in our understanding of the molecular and cellular mechanisms behind vascular conducted responses (VCRs) in systemic arterioles, we still know very little about their potential physiological and pathophysiological role in brain penetrating arterioles controlling blood flow to the deeper areas of the brain. The scope of the present review is to present an overview of the conceptual, mechanistic, and physiological role of VCRs in resistance vessels, and to discuss in detail the recent advances in our knowledge of VCRs in brain arterioles controlling cerebral blood flow. We provide a schematic view of the ion channels and intercellular communication pathways necessary for conduction of an electrical and mechanical response in the arteriolar wall, and discuss the local signaling mechanisms and cellular pathway involved in the responses to different local stimuli and in different vascular beds. Physiological modulation of VCRs, which is a rather new finding in this field, is discussed in the light of changes in plasma membrane ion channel conductance as a function of health status or disease. Finally, we discuss the possible role of VCRs in cerebrovascular function and disease as well as suggest future directions for studying VCRs in the cerebral circulation.


Assuntos
Arteríolas/fisiologia , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Músculo Liso Vascular/fisiologia , Sistema Vasomotor/fisiologia , Animais , Arteríolas/metabolismo , Arteríolas/fisiopatologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Comunicação Celular , Humanos , Canais Iônicos/metabolismo , Músculo Liso Vascular/inervação , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Transdução de Sinais , Sistema Vasomotor/metabolismo , Sistema Vasomotor/fisiopatologia
15.
Biochem Biophys Res Commun ; 424(2): 208-13, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22728883

RESUMO

Slick and Slack are members of the Slo family of high-conductance potassium channels. These channels are activated by Na(+) and Cl(-) and are highly expressed in the CNS, where they are believed to contribute to the resting membrane potential of neurons and the control of excitability. Herein, we provide evidence that Slick and Slack channels are regulated by the phosphoinositide PIP(2). Two stereoisomers of PIP(2) were able to exogenously activate Slick and Slack channels expressed in Xenopus oocytes, and in addition, it is shown that Slick and Slack channels are modulated by endogenous PIP(2). The activating effect of PIP(2) appears to occur by direct interaction with lysine 306 in Slick and lysine 339 in Slack, located at the proximal C-termini of both channels. Overall, our data suggest that PIP(2) is an important regulator of Slick and Slack channels, yet it is not involved in the recently described cell volume sensitivity of Slick channels, since mutated PIP(2)-insensitive Slick channels retained their sensitivity to cell volume.


Assuntos
Proteínas do Tecido Nervoso/agonistas , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Canais de Potássio/agonistas , Sequência de Aminoácidos , Animais , Tamanho Celular , Humanos , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Oócitos , Fosfatidilinositol 4,5-Difosfato/farmacologia , Fosfatos de Fosfatidilinositol/farmacologia , Canais de Potássio/genética , Canais de Potássio Ativados por Sódio , Xenopus laevis
16.
Biophys J ; 102(6): 1352-62, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22455918

RESUMO

Conduction processes in the vasculature have traditionally been described using cable theory, i.e., locally induced signals decaying passively along the arteriolar wall. The decay is typically quantified using the steady-state length-constant, λ, derived from cable theory. However, the applicability of cable theory to blood vessels depends on assumptions that are not necessarily fulfilled in small arteries and arterioles. We have employed a morphologically and electrophysiologically detailed mathematical model of a rat mesenteric arteriole to investigate if the assumptions hold and whether λ adequately describes simulated conduction profiles. We find that several important cable theory assumptions are violated when applied to small blood vessels. However, the phenomenological use of a length-constant from a single exponential function is a good measure of conduction length. Hence, λ should be interpreted as a descriptive measure and not in light of cable theory. Determination of λ using cable theory assumes steady-state conditions. In contrast, using the model it is possible to probe how conduction behaves before steady state is achieved. As ion channels have time-dependent activation and inactivation, the conduction profile changes considerably during this dynamic period with an initially longer spread of current. This may have implications in relation to explaining why different agonists have different conduction properties. Also, it illustrates the necessity of using and developing models that handle the nonlinearity of ion channels.


Assuntos
Arteríolas/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Modelos Biológicos , Animais , Simulação por Computador , Impedância Elétrica , Cinética , Membranas/fisiologia , Ratos
17.
Pflugers Arch ; 463(2): 279-95, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22052159

RESUMO

Intracellular Ca(2+) signals underlying conducted vasoconstriction to local application of a brief depolarizing KCl stimulus was investigated in rat mesenteric terminal arterioles (<40 µm). Using a computer model of an arteriole segment comprised of coupled endothelial cells (EC) and vascular smooth muscle cells (VSMC) simulations of both membrane potential and intracellular [Ca(2+)] were performed. The "characteristic" length constant, λ, was approximated using a modified cable equation in both experiments and simulations. We hypothesized that K(+) conductance in the arteriolar wall limit the electrotonic spread of a local depolarization along arterioles by current dissipation across the VSMC plasma membrane. Thus, we anticipated an increased λ by inhibition of voltage-activated K(+) channels. Application of the BK(Ca) channel blocker iberiotoxin (100 nM) onto mesenteric arterioles in vitro and inhibition of BK(Ca) channel current in silico increased λ by 34% and 32%, respectively. Similarly, inhibition of K(V) channels in vitro (4-aminopyridine, 1 mM) or in silico increased λ by 41% and 21%, respectively. Immunofluorescence microscopy demonstrated expression of BK(Ca), Kv1.5, Kv2.1, but not Kv1.2, in VSMCs of rat mesenteric terminal arterioles. Our results demonstrate that inhibition of voltage-activated K(+) channels enhance vascular-conducted responses to local depolarization in terminal arterioles by increasing the membrane resistance of VSMCs. These data contribute to our understanding of how differential expression patterns of voltage-activated K(+) channels may influence conducted vasoconstriction in small arteriolar networks. This finding is potentially relevant to understanding the compromised microcirculatory blood flow in systemic vascular diseases such as diabetes mellitus and hypertension.


Assuntos
Arteríolas/fisiologia , Canal de Potássio Kv1.5/fisiologia , Artérias Mesentéricas/fisiologia , Canais de Potássio/fisiologia , Canais de Potássio Shab/fisiologia , Sistema Vasomotor/fisiologia , Animais , Cálcio/metabolismo , Simulação por Computador , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Masculino , Potenciais da Membrana/fisiologia , Modelos Animais , Modelos Teóricos , Músculo Liso Vascular/fisiologia , Ratos , Ratos Sprague-Dawley
18.
Pflugers Arch ; 460(1): 41-53, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20383716

RESUMO

This study examines mechanisms by which changes in tissue oxygen tension elicit vasomotor responses and whether localized changes in oxygen tension initiates conducted vasomotor responses in mouse cremaster arterioles. Intravital microscopy was used to visualize the mouse cremaster microcirculation. The cremaster was superfused with Krebs' solution with different oxygen tensions, and a gas exchange chamber was used to induce localized changes in oxygen tension. In arterioles where red blood cells were removed by buffer perfusion, arterioles responded with same magnitudes of vasodilatation (DeltaD = 16.0 +/- 4.9 microm) when changing from high (PO(2) = 242.5 +/- 13.3 mm Hg) to low (PO(2) = 22.5 +/- 4.8 mm Hg) oxygen tension as seen in the intact cremaster circulation (DeltaD = 18.7 +/- 1.0 microm). Blockade of NO synthases by L: -NAME and adenosine receptors by DPCPX had no effects on vasomotor responses to low or high oxygen. Induction of localized low (PO(2) = 23.3 +/- 5.7 mmHg) or high (PO(2) = 300.0 +/- 25.7 mm Hg) oxygen tension caused vasodilatation or -constriction locally and at a site 1,000 microm upstream (distantly). Glibenclamide blocker of ATP-sensitive K(+) channels inhibited vasodilatation and -constriction to low (PO(2) = 16.0 +/- 6.4 mm Hg) and high (PO(2) = 337.4 +/- 12.8 mm Hg) oxygen tension. 1) ATP-sensitive K(+) channels seem to mediate, at least in part, vasodilatation and vasoconstriction to low and high oxygen tension; 2) Red blood cells are not necessary for inducing vasodilatation and vasoconstriction to low or high oxygen tension; 3) localized changes in the oxygen tension cause vasomotor responses, which are conducted upstream along arterioles in mouse cremaster microcirculation.


Assuntos
Músculos/irrigação sanguínea , Oxigênio/metabolismo , Vasoconstrição , Vasodilatação , Adenosina/metabolismo , Antagonistas do Receptor A1 de Adenosina , Antagonistas do Receptor A2 de Adenosina , Animais , Arteríolas/lesões , Arteríolas/metabolismo , Hipóxia Celular , Inibidores Enzimáticos/farmacologia , Eritrócitos/metabolismo , Canais KATP/antagonistas & inibidores , Canais KATP/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Microscopia de Vídeo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase/metabolismo , Oxigênio/sangue , Perfusão , Bloqueadores dos Canais de Potássio/farmacologia , Receptor A1 de Adenosina/metabolismo , Receptores A2 de Adenosina/metabolismo , Fluxo Sanguíneo Regional , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
19.
Can J Physiol Pharmacol ; 87(1): 8-20, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19142211

RESUMO

The largest peripheral blood pressure drop occurs in terminal arterioles (<40 microm lumen diameter). L-type voltage-dependent Ca2+ channels (VDCCs) are considered the primary pathway for Ca2+ influx during physiologic activation of vascular smooth muscle cells (VSMC). Recent evidence suggests that T-type VDCCs are expressed in renal afferent and efferent arterioles, mesenteric arterioles, and skeletal muscle arterioles. T-type channels are small-conductance, low voltage-activated, fast-inactivating channels. Thus, their role in supplying Ca2+ for contraction of VSMC has been disputed. However, T-type channels display non-inactivating window currents, which may play a role in sustained Ca2+ entry. Here, we review the possible role of T-type channels in vasomotor tone regulation in rat mesenteric terminal arterioles. The CaV3.1 channel was immunolocalized in VSMC, whereas the CaV3.2 channel was predominantly expressed in endothelial cells. Voltage-dependent Ca2+ entry was inhibited by the new specific T-type blockers R(-)-efonidipine and NNC 55-0396. The effect of NNC 55-0396 persisted in depolarized arterioles, suggesting an unusually high activation threshold of mesenteric T-type channels. T-type channels were not necessary for conduction of vasoconstriction, but appear to be important for local electromechanical coupling in VSMC. The first direct demonstration of endothelial T-type channels warrants new investigations of their role in vascular biology.


Assuntos
Arteríolas/fisiologia , Canais de Cálcio Tipo T/fisiologia , Artérias Mesentéricas/fisiologia , Animais , Cálcio/metabolismo , Endotélio Vascular/fisiologia , Humanos , Músculo Liso Vascular/fisiologia , Vasoconstrição
20.
J Vasc Res ; 46(2): 138-51, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18765948

RESUMO

BACKGROUND/AIMS: The roles of intercellular communication and T-type versus L-type voltage-dependent Ca(2+) channels (VDCCs) in conducted vasoconstriction to local KCl-induced depolarization were investigated in mesenteric arterioles. METHODS: Ratiometric Ca(2+) imaging (R) using Fura-PE3 with micro-ejection of depolarizing KCl solution and VDCC blockers, and immunohistochemical and RT-PCR techniques were applied to isolated rat mesenteric terminal arterioles (n = 71 from 47 rats; intraluminal diameter: 24 +/- 1 microm; length: 550-700 microm). RESULTS: Local application of KCl (at 0 microm) led to local (DeltaR = 0.54) and remote (DeltaR = 0.17 at 500 microm) increases in intracellular Ca(2+). Remote Ca(2+) responses were inhibited by the gap junction uncouplers carbenoxolone and palmitoleic acid. Ca(V)1.2, Ca(V)3.1 and Ca(V)3.2 channels were immunolocalized in vascular smooth muscle cells and Ca(V)3.2 in adjacent endothelial cells. Local and remote Ca(2+) responses were inhibited by bath application of L- and T-type blockers [nifedipine, NNC 55-0396 and R(-)-efonidipine]. Remote Ca(2+) responses (500 microm) were not affected by abolishing Ca(2+) entry at an intermediate position on the arterioles (at 200-300 microm) using micro-application of VDCC blockers. CONCLUSION: Both L- and T-type channels mediate Ca(2+) entry during conducted vasoconstriction to local KCl in mesenteric arterioles. However, these channels do not participate in the conduction process per se.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Artérias Mesentéricas/metabolismo , Vasoconstrição , Animais , Arteríolas/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo T/efeitos dos fármacos , Canais de Cálcio Tipo T/genética , Sinalização do Cálcio/efeitos dos fármacos , Junções Comunicantes/metabolismo , Masculino , Artérias Mesentéricas/efeitos dos fármacos , Cloreto de Potássio/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...